Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentially Private $\ell_1$-norm Linear Regression with Heavy-tailed Data (2201.03204v1)

Published 10 Jan 2022 in cs.LG, cs.CR, and stat.ML

Abstract: We study the problem of Differentially Private Stochastic Convex Optimization (DP-SCO) with heavy-tailed data. Specifically, we focus on the $\ell_1$-norm linear regression in the $\epsilon$-DP model. While most of the previous work focuses on the case where the loss function is Lipschitz, here we only need to assume the variates has bounded moments. Firstly, we study the case where the $\ell_2$ norm of data has bounded second order moment. We propose an algorithm which is based on the exponential mechanism and show that it is possible to achieve an upper bound of $\tilde{O}(\sqrt{\frac{d}{n\epsilon}})$ (with high probability). Next, we relax the assumption to bounded $\theta$-th order moment with some $\theta\in (1, 2)$ and show that it is possible to achieve an upper bound of $\tilde{O}(({\frac{d}{n\epsilon}})\frac{\theta-1}{\theta})$. Our algorithms can also be extended to more relaxed cases where only each coordinate of the data has bounded moments, and we can get an upper bound of $\tilde{O}({\frac{d}{\sqrt{n\epsilon}}})$ and $\tilde{O}({\frac{d}{({n\epsilon})\frac{\theta-1}{\theta}}})$ in the second and $\theta$-th moment case respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Di Wang (408 papers)
  2. Jinhui Xu (50 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.