Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalised Hausdorff measure of sets of Dirichlet non-improvable matrices in higher dimensions (2201.03062v2)

Published 9 Jan 2022 in math.NT

Abstract: Let $\psi:\mathbb R_{+}\to \mathbb R_{+}$ be a nonincreasing function. A pair $(A,\mathbf b),$ where $A$ is a real $m\times n$ matrix and $\mathbf b\in\mathbb R{m},$ is said to be $\psi$-Dirichlet improvable, if the system $$|A\mathbf q +\mathbf b-\mathbf p|m<\psi(T), \quad |\mathbf q|n<T$$ is solvable in $\mathbf p\in\mathbb Z{m},$ $\mathbf q\in\mathbb Z{n}$ for all sufficiently large $T$ where $|\cdot|$ denotes the supremum norm. For $\psi$-Dirichlet non-improvable sets, Kleinbock--Wadleigh (2019) proved the Lebesgue measure criterion whereas Kim--Kim (2021) established the Hausdorff measure results. In this paper we obtain the generalised Hausdorff $f$-measure version of Kim--Kim (2021) results for $\psi$-Dirichlet non-improvable sets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.