Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention-based Random Forest and Contamination Model (2201.02880v1)

Published 8 Jan 2022 in cs.LG, cs.AI, and stat.ML

Abstract: A new approach called ABRF (the attention-based random forest) and its modifications for applying the attention mechanism to the random forest (RF) for regression and classification are proposed. The main idea behind the proposed ABRF models is to assign attention weights with trainable parameters to decision trees in a specific way. The weights depend on the distance between an instance, which falls into a corresponding leaf of a tree, and instances, which fall in the same leaf. This idea stems from representation of the Nadaraya-Watson kernel regression in the form of a RF. Three modifications of the general approach are proposed. The first one is based on applying the Huber's contamination model and on computing the attention weights by solving quadratic or linear optimization problems. The second and the third modifications use the gradient-based algorithms for computing trainable parameters. Numerical experiments with various regression and classification datasets illustrate the proposed method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Lev V. Utkin (42 papers)
  2. Andrei V. Konstantinov (31 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.