Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tower-Complete Problems in Contraction-Free Substructural Logics (2201.02496v3)

Published 7 Jan 2022 in math.LO and cs.LO

Abstract: We investigate the non-elementary computational complexity of a family of substructural logics without contraction. With the aid of the technique pioneered by Lazi\'c and Schmitz (2015), we show that the deducibility problem for full Lambek calculus with exchange and weakening ($\mathbf{FL}{\mathbf{ew}}$) is not in Elementary (i.e., the class of decision problems that can be decided in time bounded by an elementary recursive function), but is in PR (i.e., the class of decision problems that can be decided in time bounded by a primitive recursive function). More precisely, we show that this problem is complete for Tower, which is a non-elementary complexity class forming a part of the fast-growing complexity hierarchy introduced by Schmitz (2016). The same complexity result holds even for deducibility in BCK-logic, i.e., the implicational fragment of $\mathbf{FL}{\mathbf{ew}}$. We furthermore show the Tower-completeness of the provability problem for elementary affine logic, which was proved to be decidable by Dal Lago and Martini (2004).

Citations (2)

Summary

We haven't generated a summary for this paper yet.