Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learnable Strategy Templates for Multi-Issue Bilateral Negotiation (2201.02455v1)

Published 7 Jan 2022 in cs.MA

Abstract: We study how to exploit the notion of strategy templates to learn strategies for multi-issue bilateral negotiation. Each strategy template consists of a set of interpretable parameterized tactics that are used to decide an optimal action at any time. We use deep reinforcement learning throughout an actor-critic architecture to estimate the tactic parameter values for a threshold utility, when to accept an offer and how to generate a new bid. This contrasts with existing work that only estimates the threshold utility for those tactics. We pre-train the strategy by supervision from the dataset collected using "teacher strategies", thereby decreasing the exploration time required for learning during negotiation. As a result, we build automated agents for multi-issue negotiations that can adapt to different negotiation domains without the need to be pre-programmed. We empirically show that our work outperforms the state-of-the-art in terms of the individual as well as social efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Pallavi Bagga (4 papers)
  2. Nicola Paoletti (37 papers)
  3. Kostas Stathis (20 papers)
Citations (4)