Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight Fine-Grained Bounds for Direct Access on Join Queries (2201.02401v6)

Published 7 Jan 2022 in cs.DB and cs.CC

Abstract: We consider the task of lexicographic direct access to query answers. That is, we want to simulate an array containing the answers of a join query sorted in a lexicographic order chosen by the user. A recent dichotomy showed for which queries and orders this task can be done in polylogarithmic access time after quasilinear preprocessing, but this dichotomy does not tell us how much time is required in the cases classified as hard. We determine the preprocessing time needed to achieve polylogarithmic access time for all join queries and all lexicographical orders. To this end, we propose a decomposition-based general algorithm for direct access on join queries. We then explore its optimality by proving lower bounds for the preprocessing time based on the hardness of a certain online Set-Disjointness problem, which shows that our algorithm's bounds are tight for all lexicographic orders on join queries. Then, we prove the hardness of Set-Disjointness based on the Zero-Clique Conjecture which is an established conjecture from fine-grained complexity theory. Interestingly, while proving our lower bound, we show that self-joins do not affect the complexity of direct access (up to logarithmic factors). Our algorithm can also be used to solve queries with projections and relaxed order requirements, though in these cases, its running time not necessarily optimal. We also show that similar techniques to those used in our lower bounds can be used to prove that, for enumerating answers to Loomis-Whitney joins, it is not possible to significantly improve upon trivially computing all answers at preprocessing. This, in turn, gives further evidence (based on the Zero-Clique Conjecture) to the enumeration hardness of self-join free cyclic joins with respect to linear preprocessing and constant delay.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. More consequences of falsifying SETH and the orthogonal vectors conjecture. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, Ilias Diakonikolas, David Kempe, and Monika Henzinger (Eds.). ACM, 253–266. https://doi.org/10.1145/3188745.3188938
  2. Consequences of Faster Alignment of Sequences. In Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 8572), Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (Eds.). Springer, 39–51. https://doi.org/10.1007/978-3-662-43948-7_4
  3. Foundations of Databases. Addison-Wesley. http://webdam.inria.fr/Alice/
  4. FAQ: Questions Asked Frequently. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (San Francisco, California, USA) (PODS ’16). Association for Computing Machinery, New York, NY, USA, 13–28. https://doi.org/10.1145/2902251.2902280
  5. Finding and Counting Given Length Cycles. Algorithmica 17, 3 (1997), 209–223. https://doi.org/10.1007/BF02523189
  6. Size Bounds and Query Plans for Relational Joins. SIAM J. Comput. 42, 4 (2013), 1737–1767. https://doi.org/10.1137/110859440
  7. Tight Hardness Results for Maximum Weight Rectangles. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy (LIPIcs, Vol. 55), Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 81:1–81:13. https://doi.org/10.4230/LIPIcs.ICALP.2016.81
  8. Arturs Backurs and Christos Tzamos. 2017. Improving Viterbi is Hard: Better Runtimes Imply Faster Clique Algorithms. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017 (Proceedings of Machine Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, 311–321. http://proceedings.mlr.press/v70/backurs17a.html
  9. Guillaume Bagan. 2009. Algorithmes et complexité des problèmes d’énumération pour l’évaluation de requêtes logiques. (Algorithms and complexity of enumeration problems for the evaluation of logical queries). Ph. D. Dissertation. University of Caen Normandy, France. https://tel.archives-ouvertes.fr/tel-00424232
  10. Computing the jth solution of a first-order query. RAIRO Theor. Informatics Appl. 42, 1 (2008), 147–164. https://doi.org/10.1051/ita:2007046
  11. Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7, 1 (2020), 4–33.
  12. Christoph Berkholz and Nicole Schweikardt. 2019. Constant Delay Enumeration with FPT-Preprocessing for Conjunctive Queries of Bounded Submodular Width. In 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany (LIPIcs, Vol. 138), Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 58:1–58:15. https://doi.org/10.4230/LIPIcs.MFCS.2019.58
  13. Johann Brault-Baron. 2013. De la pertinence de l’énumération: complexité en logiques propositionnelle et du premier ordre. Ph. D. Dissertation. Université de Caen.
  14. Johann Brault-Baron. 2016. Hypergraph Acyclicity Revisited. ACM Comput. Surv. 49, 3 (2016), 54:1–54:26. https://doi.org/10.1145/2983573
  15. Tight Fine-Grained Bounds for Direct Access on Join Queries. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (Philadelphia, PA, USA) (PODS ’22). Association for Computing Machinery, New York, NY, USA, 427–436. https://doi.org/10.1145/3517804.3526234
  16. Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (Unless APSP Can). ACM Trans. Algorithms 16, 4 (2020), 48:1–48:22. https://doi.org/10.1145/3381878
  17. Nofar Carmeli and Luc Segoufin. 2023. Conjunctive Queries With Self-Joins, Towards a Fine-Grained Enumeration Complexity Analysis. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS ’23). Association for Computing Machinery, New York, NY, USA, 277–289. https://doi.org/10.1145/3584372.3588667
  18. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries. In Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 325–341.
  19. Answering (unions of) conjunctive queries using random access and random-order enumeration. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 393–409.
  20. Hubie Chen and Stefan Mengel. 2015. A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries. In 18th International Conference on Database Theory, ICDT 2015, March 23-27, 2015, Brussels, Belgium (LIPIcs, Vol. 31), Marcelo Arenas and Martín Ugarte (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 110–126. https://doi.org/10.4230/LIPIcs.ICDT.2015.110
  21. Introduction to Algorithms, 3rd Edition. MIT Press. http://mitpress.mit.edu/books/introduction-algorithms
  22. Víctor Dalmau and Peter Jonsson. 2004. The complexity of counting homomorphisms seen from the other side. Theor. Comput. Sci. 329, 1-3 (2004), 315–323. https://doi.org/10.1016/j.tcs.2004.08.008
  23. Arnaud Durand and Stefan Mengel. 2014. The complexity of weighted counting for acyclic conjunctive queries. J. Comput. Syst. Sci. 80, 1 (2014), 277–296. https://doi.org/10.1016/j.jcss.2013.08.001
  24. Complexity Analysis of Generalized and Fractional Hypertree Decompositions. J. ACM 68, 5, Article 38 (sep 2021), 50 pages. https://doi.org/10.1145/3457374
  25. Martin Grohe and Dániel Marx. 2014. Constraint Solving via Fractional Edge Covers. ACM Trans. Algorithms 11, 1 (2014), 4:1–4:20. https://doi.org/10.1145/2636918
  26. Jens Keppeler. 2020. Answering Conjunctive Queries and FO+MOD Queries under Updates. Ph. D. Dissertation. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät. https://doi.org/10.18452/21483
  27. Functional Aggregate Queries with Additive Inequalities. ACM Trans. Database Syst. 45, 4 (2020), 17:1–17:41. https://doi.org/10.1145/3426865
  28. What Do Shannon-type Inequalities, Submodular Width, and Disjunctive Datalog Have to Do with One Another?. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts (Eds.). ACM, 429–444. https://doi.org/10.1145/3034786.3056105
  29. Higher Lower Bounds from the 3SUM Conjecture. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, Robert Krauthgamer (Ed.). SIAM, 1272–1287. https://doi.org/10.1137/1.9781611974331.ch89
  30. Tight Hardness for Shortest Cycles and Paths in Sparse Graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, Artur Czumaj (Ed.). SIAM, 1236–1252. https://doi.org/10.1137/1.9781611975031.80
  31. Dániel Marx. 2013. Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries. J. ACM 60, 6 (2013), 42:1–42:51. https://doi.org/10.1145/2535926
  32. Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis. Cambridge university press.
  33. Worst-case optimal join algorithms: [extended abstract]. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, Michael Benedikt, Markus Krötzsch, and Maurizio Lenzerini (Eds.). ACM, 37–48. https://doi.org/10.1145/2213556.2213565
  34. Worst-case Optimal Join Algorithms. J. ACM 65, 3 (2018), 16:1–16:40. https://doi.org/10.1145/3180143
  35. Francesco Scarcello. 2018. From Hypertree Width to Submodular Width and Data-dependent Structural Decompositions. In Proceedings of the 26th Italian Symposium on Advanced Database Systems, Castellaneta Marina (Taranto), Italy, June 24-27, 2018 (CEUR Workshop Proceedings, Vol. 2161), Sonia Bergamaschi, Tommaso Di Noia, and Andrea Maurino (Eds.). CEUR-WS.org. http://ceur-ws.org/Vol-2161/paper24.pdf
  36. Alexander Schrijver. 2003. Combinatorial optimization: polyhedra and efficiency. Springer.
  37. Todd L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm. In Proc. 17th International Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014, Nicole Schweikardt, Vassilis Christophides, and Vincent Leroy (Eds.). OpenProceedings.org, 96–106. https://doi.org/10.5441/002/icdt.2014.13
  38. Virginia Vassilevska Williams. 2018. On some fine-grained questions in algorithms and complexity. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018. World Scientific, 3447–3487.
  39. Virginia Vassilevska Williams and Ryan Williams. 2013. Finding, Minimizing, and Counting Weighted Subgraphs. SIAM J. Comput. 42, 3 (2013), 831–854. https://doi.org/10.1137/09076619X
  40. Virginia Vassilevska Williams and R. Ryan Williams. 2018. Subcubic Equivalences Between Path, Matrix, and Triangle Problems. J. ACM 65, 5 (2018), 27:1–27:38. https://doi.org/10.1145/3186893
  41. Virginia Vassilevska Williams and Yinzhan Xu. 2020. Monochromatic Triangles, Triangle Listing and APSP. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS, Sandy Irani (Ed.). IEEE, 786–797. https://doi.org/10.1109/FOCS46700.2020.00078
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Karl Bringmann (85 papers)
  2. Nofar Carmeli (14 papers)
  3. Stefan Mengel (45 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com