Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local decay rates of best-approximation errors using vector-valued finite elements for fields with low regularity and integrable curl or divergence (2201.01708v2)

Published 5 Jan 2022 in math.NA and cs.NA

Abstract: We estimate best-approximation errors using vector-valued finite elements for fields with low regularity in the scale of fractional-order Sobolev spaces. By assuming additionally that the target field has a curl or divergence property, we establish upper bounds on these errors that can be localized to the mesh cells. These bounds are derived using the quasi-interpolation errors with or without boundary prescription derived in [A. Ern and J.-L. Guermond, ESAIM Math. Model. Numer. Anal., 51 (2017), pp.~1367--1385]. By using the face-to-cell lifting operators analyzed in [A. Ern and J.-L. Guermond, Found. Comput. Math., (2021)], and exploiting the additional assumption made on the curl or the divergence of the target field, a localized upper bound on the quasi-interpolation error is derived. As an illustration, we show how to apply these results to the error analysis of the curl-curl problem associated with Maxwell's equations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.