Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Investigation of "Benford's" Law Divergence and Machine Learning Techniques for "Intra-Class" Separability of Fingerprint Images (2201.01699v2)

Published 5 Jan 2022 in cs.CV and cs.CY

Abstract: Protecting a fingerprint database against attackers is very vital in order to protect against false acceptance rate or false rejection rate. A key property in distinguishing fingerprint images is by exploiting the characteristics of these different types of fingerprint images. The aim of this paper is to perform the classification of fingerprint images using the Ben-ford's law divergence values and machine learning techniques. The usage of these Ben-ford's law divergence values as features fed into the machine learning techniques has proved to be very effective and efficient in the classification of fingerprint images. The effectiveness of our proposed methodology was demonstrated on five datasets, achieving very high classification "accuracies" of 100% for the Decision Tree and CNN. However, the "Naive" Bayes, and Logistic Regression achieved "accuracies" of 95.95%, and 90.54%, respectively. These results showed that Ben-ford's law features and machine learning techniques especially Decision Tree and CNN can be effectively applied for the classification of fingerprint images.

Summary

We haven't generated a summary for this paper yet.