Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel Flow-Based Hypergraph Partitioning (2201.01556v1)

Published 5 Jan 2022 in cs.DS and cs.DC

Abstract: We present a shared-memory parallelization of flow-based refinement, which is considered the most powerful iterative improvement technique for hypergraph partitioning at the moment. Flow-based refinement works on bipartitions, so current sequential partitioners schedule it on different block pairs to improve $k$-way partitions. We investigate two different sources of parallelism: a parallel scheduling scheme and a parallel maximum flow algorithm based on the well-known push-relabel algorithm. In addition to thoroughly engineered implementations, we propose several optimizations that substantially accelerate the algorithm in practice, enabling the use on extremely large hypergraphs (up to 1 billion pins). We integrate our approach in the state-of-the-art parallel multilevel framework Mt-KaHyPar and conduct extensive experiments on a benchmark set of more than 500 real-world hypergraphs, to show that the partition quality of our code is on par with the highest quality sequential code (KaHyPar), while being an order of magnitude faster with 10 threads.

Citations (10)

Summary

We haven't generated a summary for this paper yet.