Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Use of RBF Interpolation for Flux Reconstruction (2201.01548v1)

Published 5 Jan 2022 in math.NA and cs.NA

Abstract: Flux reconstruction provides a framework for solving partial differential equations in which functions are discontinuously approximated within elements. Typically, this is done by using polynomials. Here, the use of radial basis functions as a methods for underlying functional approximation is explored in one dimension, using both analytical and numerical methods. At some mesh densities, RBF flux reconstruction is found to outperform polynomial flux reconstruction, and this range of mesh densities becomes finer as the width of the RBF interpolator is increased. A method which avoids the poor conditioning of flat RBFs is used to test a wide range of basis shapes, and at very small values, the polynomial behaviour is recovered. Changing the location of the solution points is found to have an effect similar to that in polynomial FR, with the Gauss--Legendre points being the most effective. Altering the location of the functional centres is found to have only a very small effect on performance. Similar behaviours are determined for the non-linear Burgers' equation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.