Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feedback and Engagement on an Introductory Programming Module (2201.01240v1)

Published 4 Jan 2022 in cs.CY

Abstract: We ran a study on engagement and achievement for a first year undergraduate programming module which used an online learning environment containing tasks which generate automated feedback. Students could also access human feedback from traditional labs. We gathered quantitative data on engagement and achievement which allowed us to split the cohort into 6 groups. We then ran interviews with students after the end of the module to produce qualitative data on perceptions of what feedback is, how useful it is, the uses made of it, and how it bears on engagement. A general finding was that human and automated feedback are different but complementary. However there are different feedback needs by group. Our findings imply: (1) that a blended human-automated feedback approach improves engagement; and (2) that this approach needs to be differentiated according to type of student. We give implications for the design of feedback for programming modules.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Beate Grawemeyer (2 papers)
  2. John Halloran (4 papers)
  3. Matthew England (69 papers)
  4. David Croft (3 papers)
Citations (4)