Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From the lattice of torsion classes to the posets of wide subcategories and ICE-closed subcategories (2201.00595v1)

Published 3 Jan 2022 in math.RT, math.CO, and math.CT

Abstract: In this paper, we compute the posets of wide subcategories and ICE-closed subcategories from the lattice of torsion classes in an abelian length category in a purely lattice-theoretical way, by using the kappa map in a completely semidistributive lattice. As for the poset of wide subcategories, we give two more simple constructions via a bijection between wide subcategories and torsion classes with canonical join representations. More precisely, for a completely semidistributive lattice, we give two poset structures on the set of elements with canonical join representations: the kappa order (defined using the extended kappa map of Barnard--Todorov--Zhu), and the core label order (generalizing the shard intersection order for congruence-uniform lattices). Then we show that these posets for the lattice of torsion classes coincide and are isomorphic to the poset of wide subcategories. As a byproduct, we give a simple description of the shard intersection order on a finite Coxeter group using the extended kappa map.

Summary

We haven't generated a summary for this paper yet.