Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Superquantile-based learning: a direct approach using gradient-based optimization (2201.00505v1)

Published 3 Jan 2022 in math.OC

Abstract: We consider a formulation of supervised learning that endows models with robustness to distributional shifts from training to testing. The formulation hinges upon the superquantile risk measure, also known as the conditional value-at-risk, which has shown promise in recent applications of machine learning and signal processing. We show that, thanks to a direct smoothing of the superquantile function, a superquantile-based learning objective is amenable to gradient-based optimization, using batch optimization algorithms such as gradient descent or quasi-Newton algorithms, or using stochastic optimization algorithms such as stochastic gradient algorithms. A companion software SPQR implements in Python the algorithms described and allows practitioners to experiment with superquantile-based supervised learning.

Citations (3)

Summary

We haven't generated a summary for this paper yet.