Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KerGNNs: Interpretable Graph Neural Networks with Graph Kernels (2201.00491v2)

Published 3 Jan 2022 in cs.LG and cs.AI

Abstract: Graph kernels are historically the most widely-used technique for graph classification tasks. However, these methods suffer from limited performance because of the hand-crafted combinatorial features of graphs. In recent years, graph neural networks (GNNs) have become the state-of-the-art method in downstream graph-related tasks due to their superior performance. Most GNNs are based on Message Passing Neural Network (MPNN) frameworks. However, recent studies show that MPNNs can not exceed the power of the Weisfeiler-Lehman (WL) algorithm in graph isomorphism test. To address the limitations of existing graph kernel and GNN methods, in this paper, we propose a novel GNN framework, termed \textit{Kernel Graph Neural Networks} (KerGNNs), which integrates graph kernels into the message passing process of GNNs. Inspired by convolution filters in convolutional neural networks (CNNs), KerGNNs adopt trainable hidden graphs as graph filters which are combined with subgraphs to update node embeddings using graph kernels. In addition, we show that MPNNs can be viewed as special cases of KerGNNs. We apply KerGNNs to multiple graph-related tasks and use cross-validation to make fair comparisons with benchmarks. We show that our method achieves competitive performance compared with existing state-of-the-art methods, demonstrating the potential to increase the representation ability of GNNs. We also show that the trained graph filters in KerGNNs can reveal the local graph structures of the dataset, which significantly improves the model interpretability compared with conventional GNN models.

Citations (59)

Summary

We haven't generated a summary for this paper yet.