Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Robust Graph Neural Networks for Noisy Graphs with Sparse Labels (2201.00232v1)

Published 1 Jan 2022 in cs.LG

Abstract: Graph Neural Networks (GNNs) have shown their great ability in modeling graph structured data. However, real-world graphs usually contain structure noises and have limited labeled nodes. The performance of GNNs would drop significantly when trained on such graphs, which hinders the adoption of GNNs on many applications. Thus, it is important to develop noise-resistant GNNs with limited labeled nodes. However, the work on this is rather limited. Therefore, we study a novel problem of developing robust GNNs on noisy graphs with limited labeled nodes. Our analysis shows that both the noisy edges and limited labeled nodes could harm the message-passing mechanism of GNNs. To mitigate these issues, we propose a novel framework which adopts the noisy edges as supervision to learn a denoised and dense graph, which can down-weight or eliminate noisy edges and facilitate message passing of GNNs to alleviate the issue of limited labeled nodes. The generated edges are further used to regularize the predictions of unlabeled nodes with label smoothness to better train GNNs. Experimental results on real-world datasets demonstrate the robustness of the proposed framework on noisy graphs with limited labeled nodes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Enyan Dai (32 papers)
  2. Wei Jin (84 papers)
  3. Hui Liu (481 papers)
  4. Suhang Wang (118 papers)
Citations (75)

Summary

We haven't generated a summary for this paper yet.