Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust and Efficient Hamiltonian Learning (2201.00190v4)

Published 1 Jan 2022 in quant-ph

Abstract: With the fast development of quantum technology, the sizes of both digital and analog quantum systems increase drastically. In order to have better control and understanding of the quantum hardware, an important task is to characterize the interaction, i.e., to learn the Hamiltonian, which determines both static and dynamic properties of the system. Conventional Hamiltonian learning methods either require costly process tomography or adopt impractical assumptions, such as prior information on the Hamiltonian structure and the ground or thermal states of the system. In this work, we present a robust and efficient Hamiltonian learning method that circumvents these limitations based only on mild assumptions. The proposed method can efficiently learn any Hamiltonian that is sparse on the Pauli basis using only short-time dynamics and local operations without any information on the Hamiltonian or preparing any eigenstates or thermal states. The method has a scalable complexity and a vanishing failure probability regarding the qubit number. Meanwhile, it performs robustly given the presence of state preparation and measurement errors and resiliently against a certain amount of circuit and shot noise. We numerically test the scaling and the estimation accuracy of the method for transverse field Ising Hamiltonian with random interaction strengths and molecular Hamiltonians, both with varying sizes and manually added noise. All these results verify the robustness and efficacy of the method, paving the way for a systematic understanding of the dynamics of large quantum systems.

Summary

We haven't generated a summary for this paper yet.