Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovery of subdiffusion problem with noisy data via deep learning (2201.00146v1)

Published 1 Jan 2022 in math.NA and cs.NA

Abstract: Data-driven discovery of partial differential equations (PDEs) from observed data in machine learning has been developed by embedding the discovery problem. Recently, the discovery of traditional ODEs dynamics using linear multistep methods in deep learning have been discussed in [Racheal and Du, SIAM J. Numer. Anal. 59 (2021) 429-455; Du et al. arXiv:2103.11488]. We extend this framework to the data-driven discovery of the time-fractional PDEs, which can effectively characterize the ubiquitous power-law phenomena. In this paper, identifying source function of subdiffusion with noisy data using L1 approximation in deep neural network is presented. In particular, two types of networks for improving the generalization of the subdiffusion problem are designed with noisy data. The numerical experiments are given to illustrate the availability using deep learning. To the best of our knowledge, this is the first topic on the discovery of subdiffusion in deep learning with noisy data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.