Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confidence-Aware Multi-Teacher Knowledge Distillation (2201.00007v3)

Published 30 Dec 2021 in cs.LG and cs.AI

Abstract: Knowledge distillation is initially introduced to utilize additional supervision from a single teacher model for the student model training. To boost the student performance, some recent variants attempt to exploit diverse knowledge sources from multiple teachers. However, existing studies mainly integrate knowledge from diverse sources by averaging over multiple teacher predictions or combining them using other various label-free strategies, which may mislead student in the presence of low-quality teacher predictions. To tackle this problem, we propose Confidence-Aware Multi-teacher Knowledge Distillation (CA-MKD), which adaptively assigns sample-wise reliability for each teacher prediction with the help of ground-truth labels, with those teacher predictions close to one-hot labels assigned large weights. Besides, CA-MKD incorporates intermediate layers to stable the knowledge transfer process. Extensive experiments show that our CA-MKD consistently outperforms all compared state-of-the-art methods across various teacher-student architectures.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hailin Zhang (51 papers)
  2. Defang Chen (28 papers)
  3. Can Wang (156 papers)
Citations (53)