Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Queue Length and Attention Mechanisms for Enhanced Traffic Signal Control Optimization (2201.00006v3)

Published 30 Dec 2021 in cs.LG, cs.AI, cs.SY, and eess.SY

Abstract: Reinforcement learning (RL) techniques for traffic signal control (TSC) have gained increasing popularity in recent years. However, most existing RL-based TSC methods tend to focus primarily on the RL model structure while neglecting the significance of proper traffic state representation. Furthermore, some RL-based methods heavily rely on expert-designed traffic signal phase competition. In this paper, we present a novel approach to TSC that utilizes queue length as an efficient state representation. We propose two new methods: (1) Max Queue-Length (M-QL), an optimization-based traditional method designed based on the property of queue length; and (2) AttentionLight, an RL model that employs the self-attention mechanism to capture the signal phase correlation without requiring human knowledge of phase relationships. Comprehensive experiments on multiple real-world datasets demonstrate the effectiveness of our approach: (1) the M-QL method outperforms the latest RL-based methods; (2) AttentionLight achieves a new state-of-the-art performance; and (3) our results highlight the significance of proper state representation, which is as crucial as neural network design in TSC methods. Our findings have important implications for advancing the development of more effective and efficient TSC methods. Our code is released on Github (https://github. com/LiangZhang1996/AttentionLight).

Citations (5)

Summary

We haven't generated a summary for this paper yet.