Papers
Topics
Authors
Recent
Search
2000 character limit reached

A note on the nuclear dimension of Cuntz-Pimsner $C^*$-algebras associated with minimal shift spaces

Published 31 Dec 2021 in math.OA and math.DS | (2112.15519v4)

Abstract: For every one-sided shift space $X$ over a finite alphabet, left special elements are those points in $X$ having at least two preimages under the shift operation. In this paper, we show that the Cuntz-Pimsner $C*$-algebra $\mathcal{O}_X$ has nuclear dimension 1 when $X$ is minimal and the number of left special elements in $X$ is finite. This is done by describing thoroughly the cover of $X$ which also recovers an exact sequence, discovered before by T. Carlsen and S. Eilers.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.