2000 character limit reached
Hybrid subconvexity bounds for twists of $\rm GL(3)$ $L$-functions (2112.15378v2)
Published 31 Dec 2021 in math.NT
Abstract: Let $\pi$ be a $SL(3,\mathbb Z)$ Hecke-Maass cusp form and $\chi$ a primitive Dirichlet character of prime power conductor $\mathfrak{q}=pk$ with $p$ prime. In this paper we will prove the following subconvexity bound $$ L\left(\frac{1}{2}+it,\pi\times \chi\right)\ll_{\pi,\varepsilon} p{3/4}\big(\mathfrak{q}(1+|t|)\big){3/4-3/40+\varepsilon}, $$ for any $\varepsilon >0$ and $t \in \mathbb{R}$.