Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis and Control of Input-Affine Dynamical Systems using Infinite-Dimensional Robust Counterparts (2112.14838v7)

Published 29 Dec 2021 in math.OC, cs.SY, and eess.SY

Abstract: Input-affine dynamical systems often arise in control and modeling scenarios, such as the data-driven case when state-derivative observations are recorded under bounded noise. Common tasks in system analysis and control include optimal control, peak estimation, reachable set estimation, and maximum control invariant set estimation. Existing work poses these types of problems as infinite-dimensional linear programs in auxiliary functions with sum-of-squares tightenings. The bottleneck in most of these programs is the Lie derivative nonnegativity constraint posed over the time-state-control set. Decomposition techniques to improve tractability by eliminating the control variables include vertex decompositions (switching), or facial decompositions in the case where the polytopic set is a scaled box. This work extends the box-facial decomposition technique to allow for a robust-counterpart decomposition of semidefinite representable sets (e.g. polytopes, ellipsoids, and projections of spectahedra). These robust counterparts are proven to be equivalent to the original Lie constraint under mild compactness and regularity constraints. Efficacy is demonstrated under peak/distance/reachable set data-driven analysis problems and Region of Attraction maximizing control.

Citations (5)

Summary

We haven't generated a summary for this paper yet.