Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
21 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
230 tokens/sec
2000 character limit reached

Extended Self-Critical Pipeline for Transforming Videos to Text (TRECVID-VTT Task 2021) -- Team: MMCUniAugsburg (2112.14100v1)

Published 28 Dec 2021 in cs.CV

Abstract: The Multimedia and Computer Vision Lab of the University of Augsburg participated in the VTT task only. We use the VATEX and TRECVID-VTT datasets for training our VTT models. We base our model on the Transformer approach for both of our submitted runs. For our second model, we adapt the X-Linear Attention Networks for Image Captioning which does not yield the desired bump in scores. For both models, we train on the complete VATEX dataset and 90% of the TRECVID-VTT dataset for pretraining while using the remaining 10% for validation. We finetune both models with self-critical sequence training, which boosts the validation performance significantly. Overall, we find that training a Video-to-Text system on traditional Image Captioning pipelines delivers very poor performance. When switching to a Transformer-based architecture our results greatly improve and the generated captions match better with the corresponding video.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.