Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global existence and non-uniqueness for 3D Navier--Stokes equations with space-time white noise (2112.14093v1)

Published 28 Dec 2021 in math.AP and math.PR

Abstract: We establish global-in-time existence and non-uniqueness of probabilistically strong solutions to the three dimensional Navier--Stokes system driven by space-time white noise. In this setting, solutions are expected to have space regularity at most $-1/2-\kappa$ for any $\kappa>0$. Consequently, the convective term is ill-defined analytically and probabilistic renormalization is required. Up to now, only local well-posedness has been known. With the help of paracontrolled calculus we decompose the system in a way which makes it amenable to convex integration. By a careful analysis of the regularity of each term, we develop an iterative procedure which yields global non-unique probabilistically strong paracontrolled solutions.Our result applies to any divergence free initial condition in $L{2}\cup B{-1+\kappa}_{\infty,\infty}$, $\kappa>0$, and implies also non-uniqueness in law.

Summary

We haven't generated a summary for this paper yet.