Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving time dependent Fokker-Planck equations via temporal normalizing flow (2112.14012v2)

Published 28 Dec 2021 in cs.LG

Abstract: In this work, we propose an adaptive learning approach based on temporal normalizing flows for solving time-dependent Fokker-Planck (TFP) equations. It is well known that solutions of such equations are probability density functions, and thus our approach relies on modelling the target solutions with the temporal normalizing flows. The temporal normalizing flow is then trained based on the TFP loss function, without requiring any labeled data. Being a machine learning scheme, the proposed approach is mesh-free and can be easily applied to high dimensional problems. We present a variety of test problems to show the effectiveness of the learning approach.

Citations (22)

Summary

We haven't generated a summary for this paper yet.