Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The University of Texas at Dallas HLTRI's Participation in EPIC-QA: Searching for Entailed Questions Revealing Novel Answer Nuggets (2112.13946v1)

Published 28 Dec 2021 in cs.CL and cs.IR

Abstract: The Epidemic Question Answering (EPIC-QA) track at the Text Analysis Conference (TAC) is an evaluation of methodologies for answering ad-hoc questions about the COVID-19 disease. This paper describes our participation in both tasks of EPIC-QA, targeting: (1) Expert QA and (2) Consumer QA. Our methods used a multi-phase neural Information Retrieval (IR) system based on combining BM25, BERT, and T5 as well as the idea of considering entailment relations between the original question and questions automatically generated from answer candidate sentences. Moreover, because entailment relations were also considered between all generated questions, we were able to re-rank the answer sentences based on the number of novel answer nuggets they contained, as indicated by the processing of a question entailment graph. Our system, called SEaRching for Entailed QUestions revealing NOVel nuggets of Answers (SER4EQUNOVA), produced promising results in both EPIC-QA tasks, excelling in the Expert QA task.

Citations (3)

Summary

We haven't generated a summary for this paper yet.