Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Implicit regularity and linear convergence rates for the generalized trust-region subproblem (2112.13821v1)

Published 27 Dec 2021 in math.OC and cs.DS

Abstract: In this paper we develop efficient first-order algorithms for the generalized trust-region subproblem (GTRS), which has applications in signal processing, compressed sensing, and engineering. Although the GTRS, as stated, is nonlinear and nonconvex, it is well-known that objective value exactness holds for its SDP relaxation under a Slater condition. While polynomial-time SDP-based algorithms exist for the GTRS, their relatively large computational complexity has motivated and spurred the development of custom approaches for solving the GTRS. In particular, recent work in this direction has developed first-order methods for the GTRS whose running times are linear in the sparsity (the number of nonzero entries) of the input data. In contrast to these algorithms, in this paper we develop algorithms for computing $\epsilon$-approximate solutions to the GTRS whose running times are linear in both the input sparsity and the precision $\log(1/\epsilon)$ whenever a regularity parameter is positive. We complement our theoretical guarantees with numerical experiments comparing our approach against algorithms from the literature. Our numerical experiments highlight that our new algorithms significantly outperform prior state-of-the-art algorithms on sparse large-scale instances.

Citations (4)

Summary

We haven't generated a summary for this paper yet.