Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable step-size BDF3 method for Allen-Cahn equation (2112.13613v2)

Published 27 Dec 2021 in math.NA and cs.NA

Abstract: In this work, we analyze the three-step backward differentiation formula (BDF3) method for solving the Allen-Cahn equation on variable grids. For BDF2 method, the discrete orthogonal convolution (DOC) kernels are positive, the stability and convergence analysis are well established in [Liao and Zhang, \newblock Math. Comp., \textbf{90} (2021) 1207--1226; Chen, Yu, and Zhang, \newblock SIAM J. Numer. Anal., Major Revised]. However, the numerical analysis for BDF3 method with variable steps seems to be highly nontrivial, since the DOC kernels are not always positive. By developing a novel spectral norm inequality, the unconditional stability and convergence are rigorously proved under the updated step ratio restriction $r_k:=\tau_k/\tau_{k-1}\leq 1.405$ (compared with $r_k\leq 1.199$ in [Calvo and Grigorieff, \newblock BIT. \textbf{42} (2002) 689--701]) for BDF3 method. Finally, numerical experiments are performed to illustrate the theoretical results. To the best of our knowledge, this is the first theoretical analysis of variable steps BDF3 method for the Allen-Cahn equation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.