Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Network Module Decomposition and Recomposition (2112.13208v1)

Published 25 Dec 2021 in cs.LG

Abstract: We propose a modularization method that decomposes a deep neural network (DNN) into small modules from a functionality perspective and recomposes them into a new model for some other task. Decomposed modules are expected to have the advantages of interpretability and verifiability due to their small size. In contrast to existing studies based on reusing models that involve retraining, such as a transfer learning model, the proposed method does not require retraining and has wide applicability as it can be easily combined with existing functional modules. The proposed method extracts modules using weight masks and can be applied to arbitrary DNNs. Unlike existing studies, it requires no assumption about the network architecture. To extract modules, we designed a learning method and a loss function to maximize shared weights among modules. As a result, the extracted modules can be recomposed without a large increase in the size. We demonstrate that the proposed method can decompose and recompose DNNs with high compression ratio and high accuracy and is superior to the existing method through sharing weights between modules.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hiroaki Kingetsu (1 paper)
  2. Kenichi Kobayashi (7 papers)
  3. Taiji Suzuki (119 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.