Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

iSeg3D: An Interactive 3D Shape Segmentation Tool (2112.12988v1)

Published 24 Dec 2021 in cs.CV

Abstract: A large-scale dataset is essential for learning good features in 3D shape understanding, but there are only a few datasets that can satisfy deep learning training. One of the major reasons is that current tools for annotating per-point semantic labels using polygons or scribbles are tedious and inefficient. To facilitate segmentation annotations in 3D shapes, we propose an effective annotation tool, named iSeg for 3D shape. It can obtain a satisfied segmentation result with minimal human clicks (< 10). Under our observation, most objects can be considered as the composition of finite primitive shapes, and we train iSeg3D model on our built primitive-composed shape data to learn the geometric prior knowledge in a self-supervised manner. Given human interactions, the learned knowledge can be used to segment parts on arbitrary shapes, in which positive clicks help associate the primitives into the semantic parts and negative clicks can avoid over-segmentation. Besides, We also provide an online human-in-loop fine-tuning module that enables the model perform better segmentation with less clicks. Experiments demonstrate the effectiveness of iSeg3D on PartNet shape segmentation. Data and codes will be made publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Sucheng Qian (4 papers)
  2. Liu Liu (190 papers)
  3. Wenqiang Xu (37 papers)
  4. Cewu Lu (203 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.