Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient decision tree training with new data structure for secure multi-party computation (2112.12906v1)

Published 24 Dec 2021 in cs.CR

Abstract: We propose a secure multi-party computation (MPC) protocol that constructs a secret-shared decision tree for a given secret-shared dataset. The previous MPC-based decision tree training protocol (Abspoel et al. 2021) requires $O(2hmn\log n)$ comparisons, being exponential in the tree height $h$ and with $n$ and $m$ being the number of rows and that of attributes in the dataset, respectively. The cause of the exponential number of comparisons in $h$ is that the decision tree training algorithm is based on the divide-and-conquer paradigm, where dummy rows are added after each split in order to hide the number of rows in the dataset. We resolve this issue via secure data structure that enables us to compute an aggregate value for every group while hiding the grouping information. By using this data structure, we can train a decision tree without adding dummy rows while hiding the size of the intermediate data. We specifically describes a decision tree training protocol that requires only $O(hmn\log n)$ comparisons when the input attributes are continuous and the output attribute is binary. Note that the order is now \emph{linear} in the tree height $h$. To demonstrate the practicality of our protocol, we implement it in an MPC framework based on a three-party secret sharing scheme. Our implementation results show that our protocol trains a decision tree with a height of 5 in 33 seconds for a dataset of 100,000 rows and 10 attributes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.