Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SoK: Privacy-preserving Deep Learning with Homomorphic Encryption (2112.12855v2)

Published 23 Dec 2021 in cs.CR and cs.LG

Abstract: Outsourced computation for neural networks allows users access to state of the art models without needing to invest in specialized hardware and know-how. The problem is that the users lose control over potentially privacy sensitive data. With homomorphic encryption (HE) computation can be performed on encrypted data without revealing its content. In this systematization of knowledge, we take an in-depth look at approaches that combine neural networks with HE for privacy preservation. We categorize the changes to neural network models and architectures to make them computable over HE and how these changes impact performance. We find numerous challenges to HE based privacy-preserving deep learning such as computational overhead, usability, and limitations posed by the encryption schemes.

Citations (5)

Summary

We haven't generated a summary for this paper yet.