Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are E2E ASR models ready for an industrial usage? (2112.12572v2)

Published 9 Dec 2021 in eess.AS, cs.AI, cs.CL, and cs.SD

Abstract: The Automated Speech Recognition (ASR) community experiences a major turning point with the rise of the fully-neural (End-to-End, E2E) approaches. At the same time, the conventional hybrid model remains the standard choice for the practical usage of ASR. According to previous studies, the adoption of E2E ASR in real-world applications was hindered by two main limitations: their ability to generalize on unseen domains and their high operational cost. In this paper, we investigate both above-mentioned drawbacks by performing a comprehensive multi-domain benchmark of several contemporary E2E models and a hybrid baseline. Our experiments demonstrate that E2E models are viable alternatives for the hybrid approach, and even outperform the baseline both in accuracy and in operational efficiency. As a result, our study shows that the generalization and complexity issues are no longer the major obstacle for industrial integration, and draws the community's attention to other potential limitations of the E2E approaches in some specific use-cases.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Valentin Vielzeuf (17 papers)
  2. Grigory Antipov (10 papers)
Citations (8)