Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic normality of least squares estimators to stochastic differential equations driven by fractional Brownian motions (2112.12333v1)

Published 23 Dec 2021 in math.ST, math.PR, and stat.TH

Abstract: We will consider the following stochastic differential equation (SDE): \begin{equation} X_t=X_0+\int_0tb(X_s,\theta_0)ds+\sigma B_t,~~~t\in(0,T], \end{equation} where ${B_t}_{t\ge 0}$ is a fractional Brownian motion with Hurst index $H\in(1/2,1)$, $\theta_0$ is a parameter that contains a bounded and open convex subset $\Theta\subset\mathbb{R}d$, ${b(\cdot,\theta),\theta\in\Theta}$ is a family of drift coefficients with $b(\cdot,\theta):\mathbb{R}\rightarrow\mathbb{R}$, and $\sigma\in\mathbb{R}$ is assumed to be the known diffusion coefficient.

Summary

We haven't generated a summary for this paper yet.