Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning with Proper Partial Labels (2112.12303v2)

Published 23 Dec 2021 in cs.LG

Abstract: Partial-label learning is a kind of weakly-supervised learning with inexact labels, where for each training example, we are given a set of candidate labels instead of only one true label. Recently, various approaches on partial-label learning have been proposed under different generation models of candidate label sets. However, these methods require relatively strong distributional assumptions on the generation models. When the assumptions do not hold, the performance of the methods is not guaranteed theoretically. In this paper, we propose the notion of properness on partial labels. We show that this proper partial-label learning framework requires a weaker distributional assumption and includes many previous partial-label learning settings as special cases. We then derive a unified unbiased estimator of the classification risk. We prove that our estimator is risk-consistent, and we also establish an estimation error bound. Finally, we validate the effectiveness of our algorithm through experiments.

Citations (7)

Summary

We haven't generated a summary for this paper yet.