Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of ECG data to detect Atrial Fibrillation (2112.12298v1)

Published 23 Dec 2021 in cs.LG and eess.SP

Abstract: Atrial fibrillation(termed as AF/Afib henceforth) is a discrete and often rapid heart rhythm that can lead to clots near the heart. We can detect Afib by ECG signal by the absence of p and inconsistent intervals between R waves as shown in fig(1). Existing methods revolve around CNN that are used to detect afib but most of them work with 12 point lead ECG data where in our case the health gauge watch deals with single-point ECG data. Twelve-point lead ECG data is more accurate than a single point. Furthermore, the health gauge watch data is much noisier. Implementing a model to detect Afib for the watch is a test of how the CNN is changed/modified to work with real life data

Summary

We haven't generated a summary for this paper yet.