Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The semiclassical structure of the scattering matrix for a manifold with infinite cylindrical end (2112.12007v2)

Published 22 Dec 2021 in math.SP and math.AP

Abstract: We study the microlocal properties of the scattering matrix associated to the semiclassical Schr\"odinger operator $P=h2\Delta_X+V$ on a Riemannian manifold with an infinite cylindrical end. The scattering matrix at $E=1$ is a linear operator $S=S_h$ defined on a Hilbert subspace of $L2(Y)$ that parameterizes the continuous spectrum of $P$ at energy $1$. Here $Y$ is the cross section of the end of $X$, which is not necessarily connected. We show that, under certain assumptions, microlocally $S$ is a Fourier integral operator associated to the graph of the scattering map $\kappa:\mathcal{D}{\kappa}\to T*Y$, with $\mathcal{D}\kappa\subset T*Y$. The scattering map $\kappa$ and its domain $\mathcal{D}_\kappa$ are determined by the Hamilton flow of the principal symbol of $P$. As an application we prove that, under additional hypotheses on the scattering map, the eigenvalues of the associated unitary scattering matrix are equidistributed on the unit circle.

Summary

We haven't generated a summary for this paper yet.