Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Multifidelity Likelihood-Free Bayesian Inference with Adaptive Computational Resource Allocation (2112.11971v1)

Published 22 Dec 2021 in stat.CO and q-bio.QM

Abstract: Likelihood-free Bayesian inference algorithms are popular methods for calibrating the parameters of complex, stochastic models, required when the likelihood of the observed data is intractable. These algorithms characteristically rely heavily on repeated model simulations. However, whenever the computational cost of simulation is even moderately expensive, the significant burden incurred by likelihood-free algorithms leaves them unviable in many practical applications. The multifidelity approach has been introduced (originally in the context of approximate Bayesian computation) to reduce the simulation burden of likelihood-free inference without loss of accuracy, by using the information provided by simulating computationally cheap, approximate models in place of the model of interest. The first contribution of this work is to demonstrate that multifidelity techniques can be applied in the general likelihood-free Bayesian inference setting. Analytical results on the optimal allocation of computational resources to simulations at different levels of fidelity are derived, and subsequently implemented practically. We provide an adaptive multifidelity likelihood-free inference algorithm that learns the relationships between models at different fidelities and adapts resource allocation accordingly, and demonstrate that this algorithm produces posterior estimates with near-optimal efficiency.

Summary

We haven't generated a summary for this paper yet.