Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SOLIS -- The MLOps journey from data acquisition to actionable insights (2112.11925v2)

Published 22 Dec 2021 in cs.LG

Abstract: Machine Learning operations is unarguably a very important and also one of the hottest topics in Artificial Intelligence lately. Being able to define very clear hypotheses for actual real-life problems that can be addressed by machine learning models, collecting and curating large amounts of data for model training and validation followed by model architecture search and actual optimization and finally presenting the results fits very well the scenario of Data Science experiments. This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems. Automating live configuration mechanisms, on the fly adapting to live or offline data capture and consumption, serving multiple models in parallel either on edge or cloud architectures, addressing specific limitations of GPU memory or compute power, post-processing inference or prediction results and serving those either as APIs or with IoT based communication stacks in the same end-to-end pipeline are the real challenges that we try to address in this particular paper. In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all above requirements while using basic cross-platform tensor framework and script language engines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Razvan Ciobanu (1 paper)
  2. Alexandru Purdila (2 papers)
  3. Laurentiu Piciu (5 papers)
  4. Andrei Damian (4 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.