Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Binary Image Skeletonization Using 2-Stage U-Net (2112.11824v1)

Published 22 Dec 2021 in cs.CV

Abstract: Object Skeletonization is the process of extracting skeletal, line-like representations of shapes. It provides a very useful tool for geometric shape understanding and minimal shape representation. It also has a wide variety of applications, most notably in anatomical research and activity detection. Several mathematical algorithmic approaches have been developed to solve this problem, and some of them have been proven quite robust. However, a lesser amount of attention has been invested into deep learning solutions for it. In this paper, we use a 2-stage variant of the famous U-Net architecture to split the problem space into two sub-problems: shape minimization and corrective skeleton thinning. Our model produces results that are visually much better than the baseline SkelNetOn model. We propose a new metric, M-CCORR, based on normalized correlation coefficients as an alternative to F1 for this challenge as it solves the problem of class imbalance, managing to recognize skeleton similarity without suffering from F1's over-sensitivity to pixel-shifts.

Summary

We haven't generated a summary for this paper yet.