Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly Types (2112.11573v2)

Published 21 Dec 2021 in cs.CV

Abstract: We study anomaly clustering, grouping data into coherent clusters of anomaly types. This is different from anomaly detection that aims to divide anomalies from normal data. Unlike object-centered image clustering, anomaly clustering is particularly challenging as anomalous patterns are subtle and local. We present a simple yet effective clustering framework using a patch-based pretrained deep embeddings and off-the-shelf clustering methods. We define a distance function between images, each of which is represented as a bag of embeddings, by the Euclidean distance between weighted averaged embeddings. The weight defines the importance of instances (i.e., patch embeddings) in the bag, which may highlight defective regions. We compute weights in an unsupervised way or in a semi-supervised way when labeled normal data is available. Extensive experimental studies show the effectiveness of the proposed clustering framework along with a novel distance function upon exist-ing multiple instance or deep clustering frameworks. Over-all, our framework achieves 0.451 and 0.674 normalized mutual information scores on MVTec object and texture categories and further improve with a few labeled normal data (0.577, 0.669), far exceeding the baselines (0.244, 0.273) or state-of-the-art deep clustering methods (0.176, 0.277).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Kihyuk Sohn (54 papers)
  2. Jinsung Yoon (55 papers)
  3. Chun-Liang Li (60 papers)
  4. Chen-Yu Lee (48 papers)
  5. Tomas Pfister (89 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.