Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight constraints on probabilistic convertibility of quantum states (2112.11321v4)

Published 21 Dec 2021 in quant-ph, math-ph, and math.MP

Abstract: We develop two general approaches to characterising the manipulation of quantum states by means of probabilistic protocols constrained by the limitations of some quantum resource theory. First, we give a general necessary condition for the existence of a physical transformation between quantum states, obtained using a recently introduced resource monotone based on the Hilbert projective metric. In all affine quantum resource theories (e.g. coherence, asymmetry, imaginarity) as well as in entanglement distillation, we show that the monotone provides a necessary and sufficient condition for one-shot resource convertibility under resource-non-generating operations, and hence no better restrictions on all probabilistic protocols are possible. We use the monotone to establish improved bounds on the performance of both one-shot and many-copy probabilistic resource distillation protocols. Complementing this approach, we introduce a general method for bounding achievable probabilities in resource transformations under resource-non-generating maps through a family of convex optimisation problems. We show it to tightly characterise single-shot probabilistic distillation in broad types of resource theories, allowing an exact analysis of the trade-offs between the probabilities and errors in distilling maximally resourceful states. We demonstrate the usefulness of both of our approaches in the study of quantum entanglement distillation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. P. M. Alberti and A. Uhlmann, A problem relating to positive linear maps on matrix algebras, Rep. Math. Phys. 18, 163 (1980).
  2. M. A. Nielsen, Conditions for a Class of Entanglement Transformations, Phys. Rev. Lett. 83, 436 (1999).
  3. G. Vidal, Entanglement of Pure States for a Single Copy, Phys. Rev. Lett. 83, 1046 (1999).
  4. F. Buscemi, Comparison of Quantum Statistical Models: Equivalent Conditions for Sufficiency, Commun. Math. Phys. 310, 625 (2012).
  5. M. Horodecki and J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics, Nat. Commun. 4, 2059 (2013a).
  6. F. Buscemi and G. Gour, Quantum relative Lorenz curves, Phys. Rev. A 95, 012110 (2017).
  7. G. Gour, Quantum resource theories in the single-shot regime, Phys. Rev. A 95, 062314 (2017).
  8. R. Takagi and B. Regula, General Resource Theories in Quantum Mechanics and Beyond: Operational Characterization via Discrimination Tasks, Phys. Rev. X 9, 031053 (2019).
  9. W. Zhou and F. Buscemi, General state transitions with exact resource morphisms: A unified resource-theoretic approach, J. Phys. A: Math. Theor. 53, 445303 (2020).
  10. M. Horodecki and J. Oppenheim, (Quantumness in the context of) Resource theories, Int. J. Mod. Phys. B 27, 1345019 (2013b).
  11. E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019).
  12. F. G. S. L. Brandão and G. Gour, Reversible framework for quantum resource theories, Phys. Rev. Lett. 115, 070503 (2015).
  13. K. Fang and Z.-W. Liu, No-Go Theorems for Quantum Resource Purification, Phys. Rev. Lett. 125, 060405 (2020).
  14. T. Gonda and R. W. Spekkens, Monotones in General Resource Theories, arXiv:1912.07085 (2019).
  15. C.-Y. Hsieh, Resource Preservability, Quantum 4, 244 (2020).
  16. K. Kuroiwa and H. Yamasaki, General Quantum Resource Theories: Distillation, Formation and Consistent Resource Measures, Quantum 4, 355 (2020).
  17. B. Regula and R. Takagi, Fundamental limitations on distillation of quantum channel resources, Nat. Commun. 12, 4411 (2021).
  18. K. Fang and Z.-W. Liu, No-Go Theorems for Quantum Resource Purification: New Approach and Channel Theory, PRX Quantum 3, 010337 (2022).
  19. S. Bravyi and A. Kitaev, Universal quantum computation with ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316 (2005).
  20. H.-K. Lo and S. Popescu, Concentrating entanglement by local actions: Beyond mean values, Phys. Rev. A 63, 022301 (2001).
  21. P. J. Bushell, Hilbert’s metric and positive contraction mappings in a Banach space, Arch. Rat. Mech. Anal. 52, 330 (1973).
  22. B. Regula, Probabilistic Transformations of Quantum Resources, Phys. Rev. Lett. 128, 110505 (2022).
  23. Y. Liu and X. Yuan, Operational resource theory of quantum channels, Phys. Rev. Research 2, 012035 (2020).
  24. G. Gour and A. Winter, How to Quantify a Dynamical Quantum Resource, Phys. Rev. Lett. 123, 150401 (2019).
  25. S. Ishizaka, Bound Entanglement Provides Convertibility of Pure Entangled States, Phys. Rev. Lett. 93, 190501 (2004).
  26. F. G. S. L. Brandão and M. B. Plenio, A Reversible Theory of Entanglement and its Relation to the Second Law, Commun. Math. Phys. 295, 829 (2010).
  27. E. Chitambar and G. Gour, Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence, Phys. Rev. Lett. 117, 030401 (2016).
  28. L. Lami, Completing the Grand Tour of Asymptotic Quantum Coherence Manipulation, IEEE Trans. Inf. Theory 66, 2165 (2020).
  29. L. Lami and B. Regula, No second law of entanglement manipulation after all, arXiv:2111.02438 (2021).
  30. P. Faist and R. Renner, Fundamental Work Cost of Quantum Processes, Phys. Rev. X 8, 021011 (2018).
  31. E. B. Davies and J. T. Lewis, An operational approach to quantum probability, Commun. Math. Phys. 17, 239 (1970).
  32. M. Ozawa, Quantum measuring processes of continuous observables, J. Math. Phys. 25, 79 (1984).
  33. V. Vedral and M. B. Plenio, Entanglement Measures and Purification Procedures, Phys. Rev. A 57, 1619 (1998).
  34. G. Vidal, Entanglement monotones, J. Mod. Opt. 47, 355 (2000).
  35. G. Vidal and R. Tarrach, Robustness of entanglement, Phys. Rev. A 59, 141 (1999).
  36. N. Datta, Min- and Max-Relative Entropies and a New Entanglement Monotone, IEEE Trans. Inf. Theory 55, 2816 (2009).
  37. M. Lewenstein and A. Sanpera, Separability and Entanglement of Composite Quantum Systems, Phys. Rev. Lett. 80, 2261 (1998).
  38. A. F. Ducuara and P. Skrzypczyk, Operational Interpretation of Weight-Based Resource Quantifiers in Convex Quantum Resource Theories, Phys. Rev. Lett. 125, 110401 (2020).
  39. E. Kohlberg and J. W. Pratt, The Contraction Mapping Approach to the Perron-Frobenius Theory: Why Hilbert’s Metric? Math. Oper. Res. 7, 198 (1982).
  40. J. P. Ponstein, Approaches to the Theory of Optimization (Cambridge University Press, 2004).
  41. R. T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970).
  42. A. Kent, Entangled Mixed States and Local Purification, Phys. Rev. Lett. 81, 2839 (1998).
  43. E. Jane, Purification of two-qubit mixed states, Quant. Inf. Comput. 2, 348 (2002), arXiv:quant-ph/0205107 .
  44. P. Horodecki and M. Demianowicz, Fidelity thresholds in single copy entanglement distillation, Phys. Lett. A 354, 40 (2006).
  45. G. Gour and R. W. Spekkens, The resource theory of quantum reference frames: Manipulations and monotones, New J. Phys. 10, 033023 (2008).
  46. A. Hickey and G. Gour, Quantifying the imaginarity of quantum mechanics, J. Phys. A: Math. Theor. 51, 414009 (2018).
  47. M. Howard and E. Campbell, Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing, Phys. Rev. Lett. 118, 090501 (2017).
  48. M.-D. Choi, Completely positive linear maps on complex matrices, Lin. Alg. Appl. 10, 285 (1975).
  49. S. Ishizaka and M. B. Plenio, Multiparticle entanglement manipulation under positive partial transpose preserving operations, Phys. Rev. A 71, 052303 (2005).
  50. A. Shimony, Degree of Entanglement, Ann. NY Ac. 755, 675 (1995).
  51. B. Regula, Convex geometry of quantum resource quantification, J. Phys. A: Math. Theor. 51, 045303 (2018).
  52. F. Buscemi and N. Datta, The Quantum Capacity of Channels With Arbitrarily Correlated Noise, IEEE Trans. Inf. Theory 56, 1447 (2010).
  53. L. Wang and R. Renner, One-Shot Classical-Quantum Capacity and Hypothesis Testing, Phys. Rev. Lett. 108, 200501 (2012).
  54. G. Ludwig, An Axiomatic Basis for Quantum Mechanics: Volume 1 Derivation of Hilbert Space Structure (Springer-Verlag, Berlin Heidelberg, 1985).
  55. A. Hartkämper and H. Neumann, eds., Foundations of Quantum Mechanics and Ordered Linear Spaces (Springer, 1974).
  56. L. Lami, Non-Classical Correlations in Quantum Mechanics and Beyond, Ph.D. thesis, Universitat Autònoma de Barcelona (2017), arXiv:1803.02902 .
  57. B. M. Terhal and P. Horodecki, Schmidt number for density matrices, Phys. Rev. A 61, 040301 (2000).
  58. D. Jonathan and M. B. Plenio, Entanglement-Assisted Local Manipulation of Pure Quantum States, Phys. Rev. Lett. 83, 3566 (1999).
Citations (21)

Summary

We haven't generated a summary for this paper yet.