Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamically Stable Poincaré Embeddings for Neural Manifolds (2112.11172v2)

Published 21 Dec 2021 in cs.LG, math-ph, and math.MP

Abstract: In a Riemannian manifold, the Ricci flow is a partial differential equation for evolving the metric to become more regular. We hope that topological structures from such metrics may be used to assist in the tasks of machine learning. However, this part of the work is still missing. In this paper, we propose Ricci flow assisted Eucl2Hyp2Eucl neural networks that bridge this gap between the Ricci flow and deep neural networks by mapping neural manifolds from the Euclidean space to the dynamically stable Poincar\'e ball and then back to the Euclidean space. As a result, we prove that, if initial metrics have an $L2$-norm perturbation which deviates from the Hyperbolic metric on the Poincar\'e ball, the scaled Ricci-DeTurck flow of such metrics smoothly and exponentially converges to the Hyperbolic metric. Specifically, the role of the Ricci flow is to serve as naturally evolving to the stable Poincar\'e ball. For such dynamically stable neural manifolds under the Ricci flow, the convergence of neural networks embedded with such manifolds is not susceptible to perturbations. And we show that Ricci flow assisted Eucl2Hyp2Eucl neural networks outperform with their all Euclidean counterparts on image classification tasks.

Summary

We haven't generated a summary for this paper yet.