Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shafarevich-Tate groups of holomorphic Lagrangian fibrations (2112.10921v3)

Published 21 Dec 2021 in math.AG and math.CV

Abstract: Consider a Lagrangian fibration $\pi\colon X\to \mathbb Pn$ on a hyperk\"ahler manifold $X$. There are two ways to construct a holomorphic family of deformations of $\pi$ over $\mathbb C$. The first one is known under the name Shafarevich-Tate family while the second one is the degenerate twistor family constructed by Verbitsky. We show that both families coincide. We prove that for a very general $X$ all members of the Shafarevich-Tate family are K\"ahler. There is a related notion of the Shafarevich-Tate group associated to a Lagrangian fibration. Its connected component of unity can be shown to be isomorphic to $\mathbb C/\Lambda$ where $\Lambda$ is a finitely generated subgroup of $\mathbb C$ and $\mathbb C$ is thought of as the base of the Shafarevich-Tate family. We show that for a very general $X$, projective deformations in the Shafarevich-Tate family correspond to the torsion points in the connected component of unity of the Shafarevich-Tate group. A sufficient condition for a Lagrangian fibration $X$ to be projective is existence of a holomorphic section. We find sufficient cohomological conditions for existence of a deformation in the Shafarevich-Tate family that admits a section.

Summary

We haven't generated a summary for this paper yet.