Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training dataset and dictionary sizes matter in BERT models: the case of Baltic languages (2112.10553v1)

Published 20 Dec 2021 in cs.CL

Abstract: Large pretrained masked LLMs have become state-of-the-art solutions for many NLP problems. While studies have shown that monolingual models produce better results than multilingual models, the training datasets must be sufficiently large. We trained a trilingual LitLat BERT-like model for Lithuanian, Latvian, and English, and a monolingual Est-RoBERTa model for Estonian. We evaluate their performance on four downstream tasks: named entity recognition, dependency parsing, part-of-speech tagging, and word analogy. To analyze the importance of focusing on a single language and the importance of a large training set, we compare created models with existing monolingual and multilingual BERT models for Estonian, Latvian, and Lithuanian. The results show that the newly created LitLat BERT and Est-RoBERTa models improve the results of existing models on all tested tasks in most situations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Marko Robnik-Šikonja (39 papers)
  2. Matej Ulčar (8 papers)
Citations (11)