Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Stochastic Proximal Gradient Descent with Variance Reduction over Time-varying Networks (2112.10389v2)

Published 20 Dec 2021 in cs.LG, cs.NI, and math.OC

Abstract: In decentralized learning, a network of nodes cooperate to minimize an overall objective function that is usually the finite-sum of their local objectives, and incorporates a non-smooth regularization term for the better generalization ability. Decentralized stochastic proximal gradient (DSPG) method is commonly used to train this type of learning models, while the convergence rate is retarded by the variance of stochastic gradients. In this paper, we propose a novel algorithm, namely DPSVRG, to accelerate the decentralized training by leveraging the variance reduction technique. The basic idea is to introduce an estimator in each node, which tracks the local full gradient periodically, to correct the stochastic gradient at each iteration. By transforming our decentralized algorithm into a centralized inexact proximal gradient algorithm with variance reduction, and controlling the bounds of error sequences, we prove that DPSVRG converges at the rate of $O(1/T)$ for general convex objectives plus a non-smooth term with $T$ as the number of iterations, while DSPG converges at the rate $O(\frac{1}{\sqrt{T}})$. Our experiments on different applications, network topologies and learning models demonstrate that DPSVRG converges much faster than DSPG, and the loss function of DPSVRG decreases smoothly along with the training epochs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.