Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Networks for Delta Hedging (2112.10084v1)

Published 19 Dec 2021 in q-fin.CP, q-fin.PM, and q-fin.PR

Abstract: The Black-Scholes model, defined under the assumption of a perfect financial market, theoretically creates a flawless hedging strategy allowing the trader to evade risks in a portfolio of options. However, the concept of a "perfect financial market," which requires zero transaction and continuous trading, is challenging to meet in the real world. Despite such widely known limitations, academics have failed to develop alternative models successful enough to be long-established. In this paper, we explore the landscape of Deep Neural Networks(DNN) based hedging systems by testing the hedging capacity of the following neural architectures: Recurrent Neural Networks, Temporal Convolutional Networks, Attention Networks, and Span Multi-Layer Perceptron Networks. In addition, we attempt to achieve even more promising results by combining traditional derivative hedging models with DNN based approaches. Lastly, we construct \textbf{NNHedge}, a deep learning framework that provides seamless pipelines for model development and assessment for the experiments.

Summary

We haven't generated a summary for this paper yet.