Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Long-Term Dependencies for Generating Dynamic Scene Graphs (2112.09828v2)

Published 18 Dec 2021 in cs.CV

Abstract: Dynamic scene graph generation from a video is challenging due to the temporal dynamics of the scene and the inherent temporal fluctuations of predictions. We hypothesize that capturing long-term temporal dependencies is the key to effective generation of dynamic scene graphs. We propose to learn the long-term dependencies in a video by capturing the object-level consistency and inter-object relationship dynamics over object-level long-term tracklets using transformers. Experimental results demonstrate that our Dynamic Scene Graph Detection Transformer (DSG-DETR) outperforms state-of-the-art methods by a significant margin on the benchmark dataset Action Genome. Our ablation studies validate the effectiveness of each component of the proposed approach. The source code is available at https://github.com/Shengyu-Feng/DSG-DETR.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com