Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multimeasurement Generative Models (2112.09822v2)

Published 18 Dec 2021 in stat.ML and cs.LG

Abstract: We formally map the problem of sampling from an unknown distribution with a density in $\mathbb{R}d$ to the problem of learning and sampling a smoother density in $\mathbb{R}{Md}$ obtained by convolution with a fixed factorial kernel: the new density is referred to as M-density and the kernel as multimeasurement noise model (MNM). The M-density in $\mathbb{R}{Md}$ is smoother than the original density in $\mathbb{R}d$, easier to learn and sample from, yet for large $M$ the two problems are mathematically equivalent since clean data can be estimated exactly given a multimeasurement noisy observation using the Bayes estimator. To formulate the problem, we derive the Bayes estimator for Poisson and Gaussian MNMs in closed form in terms of the unnormalized M-density. This leads to a simple least-squares objective for learning parametric energy and score functions. We present various parametrization schemes of interest including one in which studying Gaussian M-densities directly leads to multidenoising autoencoders--this is the first theoretical connection made between denoising autoencoders and empirical Bayes in the literature. Samples in $\mathbb{R}d$ are obtained by walk-jump sampling (Saremi & Hyvarinen, 2019) via underdamped Langevin MCMC (walk) to sample from M-density and the multimeasurement Bayes estimation (jump). We study permutation invariant Gaussian M-densities on MNIST, CIFAR-10, and FFHQ-256 datasets, and demonstrate the effectiveness of this framework for realizing fast-mixing stable Markov chains in high dimensions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Saeed Saremi (21 papers)
  2. Rupesh Kumar Srivastava (19 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.