Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Envisioning Future Deep Learning Theories: Some Basic Concepts and Characteristics (2112.09741v2)

Published 17 Dec 2021 in cs.LG, cond-mat.dis-nn, cond-mat.stat-mech, cs.CV, and stat.ML

Abstract: To advance deep learning methodologies in the next decade, a theoretical framework for reasoning about modern neural networks is needed. While efforts are increasing toward demystifying why deep learning is so effective, a comprehensive picture remains lacking, suggesting that a better theory is possible. We argue that a future deep learning theory should inherit three characteristics: a \textit{hierarchically} structured network architecture, parameters \textit{iteratively} optimized using stochastic gradient-based methods, and information from the data that evolves \textit{compressively}. As an instantiation, we integrate these characteristics into a graphical model called \textit{neurashed}. This model effectively explains some common empirical patterns in deep learning. In particular, neurashed enables insights into implicit regularization, information bottleneck, and local elasticity. Finally, we discuss how neurashed can guide the development of deep learning theories.

Citations (3)

Summary

We haven't generated a summary for this paper yet.